Big Data and Artificial Intelligence to Estimate Crop-Evapotranspiration on Management Zone Level

Ofer Beeri and Ran Pelta

September 2020

Grand Water Research Institute The Technion platform for science, technology, engineering and management of water

Department of Natural Resources and Environmental Management החוג לניהול משאבי טבע וסביבה

Virtual Conference

Agenda

- Manna Irrigation
- Main key for irrigation decision-making in the zone level: the crop coefficient (Kc)
- Two approaches for big data estimation of Kc using remote sensing:
 - 1. One crop many plots
 - 2. One plot many crops
- Examples for each approach
- Conclusions and future directions

Manna Irrigation

- Integrate inputs
- Management zone: at least 0.5 ha. Equal to pure pixel of 30m, or area control by valve
- Implementation: from <u>past</u> (irrigate the amount that was lost) to <u>forecast</u> (irrigate what will be needed)

The Crop Coefficient (Kc)

Presentation goal:

Big data and intelligence analysis to determine crop coefficient (Kc) for management zones of => 0.5 ha

Crop evapotranspiration (ETc) = reference evapotranspiration (ETO) * Kc ETc (TIR) is >60m and above (not relevant for management zone), ETO changes are in mode of several 100 m

Kc change from crop to crop (Agronomic Kc) or from zone to zone (satellite Kc)

The Crop Coefficient (Kc)

The Crop Coefficient (Kc)

Crop water stress is another factor for irrigation decision making, but it is not presented here

Manna Database for Analysis

For each zone we used the following features:

- Polygon
- Crop type
- Season milestones
- Weather
- Remote sensing
- Crop Kc protocol

Two Approaches for Big Data Estimation of Kc

- Consider various soil types, climate, etc.
- Requires a lot of plots with the same crop
- Requires a lot of parameters/features
- Only crops with sufficient data
- Forecast of entire season

One Plot Many Crops

- Consider local conditions
- Needs only a few years of data of the same plot
- Requires only past Kc
- Any crop anywhere
- Forecast of near future

First Approach Forecast

Forecast entire season

Forecast of the entire season will enable us to:

- Forecast Kc
- Have a growth model at the beginning of each growing season
- Derive better milestones

How does it look like?

na

Al Infrastructure Schema

Separately for each plot (3 models)

Results Summary

total observations (all forecast days): 10114
total zones : 34

Conclusions and Future Directions

Conclusions

- Intensive QA is mandatory and takes most of the time (~70-80%)
- The two approaches complete each other and achieve good results
- Models enable to fill lack of information past and future

Future directions

- Improve current models
- Find the optimal method to combine the models
- Integrate forecast-Kc with forecast of water stress

Thank You

Ofer Beeri

Ofer.beeri@manna-irrigation.com www.linkedin.com/in/ofer-beeri www.researchgate.net/profile/Ofer_Beeri3

Ran Pelta Ran.pelta@manna-irrigation.com www.linkedin.com/in/ran-pelta www.researchgate.net/profile/Ran_Pelta

